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I. INTRODUCTION '
1. The Calendering Process

The term “‘calender” is derived from the Greek Kylindros (cylinder)
and according to Webster’s International Dictionary, it means ‘“‘to press
(as cloth, rubber, paper) between rollers or ‘plates in order to make
smooth and glossy or glazed or to thin into sheets”. The calendering of mol-
ten polymers is a process for the production of continuous sheet or film by
squeezing the melt between a pair of heated counter-rotating rolls.

The modern technological developments in the calendering of ther-
moplastic materials are offshoots of the art of fabric and rubber calender-
ing, which dates back to the carly 1800’s. Elden and Swan! present a
short history and a detailed account of the major technological develop-
ments up to about 1968.

Industrial calenders consist usually of 3-6 rotating rollsina Z or L
arrangement. The basic forming operation is completed by the calender
itself and is normally followed by additional treatment of the plastic
sheet or film produced. A typical calendering layout is shown in Fig. 1
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Figure I. A typical calendering layout,

(from Marshall*). The molten material is fed to the calender rolls from
a Banbury mixer and two-roll mill system or from a large extruder.
Calender sizes range up to 90 cm in diameter and 250 cm wide, with
polymer throughputs up to 4000 kg/hr, according to Tadmor and Gogos®.
Roll speeds may be as high as 2 m/s for certain thin flexible films (thickness
less than 0.1 mm). Calendering lines are very expensive in terms of
capital investment in machinery. Film and sheet extrusion are competitive
processes because the capital investment for the extruder itself is only a
fraction of the cost of a calender. However, the high quality and volume
capabilities of calendering lines make them advantageous for many types
of products, especially for temperature sensitive materials. Polyvinyl
chloride (PVC) is the major polymer that is calendered.
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“2. Literature Survey

o. Mathematical Modeling The quality of the sheet or film produced is
determined by the flow and heat transfer phenomena in the gap between
two rotating rolls. It is thus of great importance to determine the velocity
and temperature profiles as the melt is squeezed between the rolls
(see Fig. 2), the pressure distribution on the roll surfaces, the roll separating
force and the torque and energy input. One of the carliest attempts to
model this process was published by Ardichvili¢, Eley®* presented a
somewhat different analysis and Finston? included thermal effects. It is,
however, a rather realistic Newtonian flow analysis by Gaskell® that
spearheaded further developments in modeling. An attempt to include
viscoelastic effects was presented by Paslay®. The major conclusions of
these early investigations were summarized by Marshall?,

Figure 2. Schematic-representation of molten polymer sheet
passing through a calender,

Mc Kelvey!® reworked Gaskell’s model for Newtonian flow and extended
it to incinde non-Newtonian (i.c. shear-thinning) effects. Brazinsky et al!
presented an analysis for power-law fluids -and Alston and Astill}* for a
hyperbolic tangent viscosity model. Some inaccuracies in McKelvey's®
power consumption calculations were corrected by Ebrmann and Vlacho-
pouloss. The asymmetrical problem was treated analytically using bipolar
cylindrical coordinates by Ebrlich and Slattery!* and by Takserman-Krozer
et al's. Renert!® provided an approximate solution for the pressure profile
in the nip for the power-law model. Reher and Grader!? presented a nume-
rical solution for the non-Newtonian problem. Some experimental results
and numerical calculations on temperature development due to viscous
dissipation were reported by Torner's, Viscoelasticity was taken into account
in the investigations of Tokita and White??, Chong?®® and White®.
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Kiparissides and Vlachopoulos® developed a finite eclement analysis for.
symmetric and asymmetric calendering (different roll specds, different roll
diameters). Viscous dissipation effects were included in finite difference
solutions of the energy equation in bipolar coordinates by Bekin et al*® and
by Kiparissides and Vlachopoulos® in rectangular coordinates. The non-iso-
thermal problem was also treated by the method of orthogonal collocation
by Dobbels and Mewis®. Agassant and co-workers?6:%,% presented a
method for the calculation of the average temperature rise and several
calculations of separating forces, torques and the critical conditions for the
appearance of defects in calendered shects. Nonisothermal calculations
were also carried out by Dimitrijew and Sporjagin? by the finite difference
method and by Woskressenski et al*®® by the finite element method. Seeger
et al*! presented a finite element solution and calculated velocity and stress
profiles for a power-law fluid.

An isothermal model with slip was developed by Vlachopoulos and
Hrymak*® using the lubrication approximation and a Runge-Kutta solution,
Other investigations were carried out by Chung for Binghan plastic fluids3s
and compressible fluids®, by Suto and co-workers®*¥ for Newtonian and
viscoelastic fluids and by Lee ct al®® for a Maxwell fluid,

b. Experimental Investigations There have been very few experimental
investigations that were published in the open literature. For a long time,
Bergen and Scott’s® measurements on a plasticized resin were the only
basis for comparison of the proposed mathematical models. Direct com-
parisons could not be made, however, because of limited information on
the rheological properties of the resin. Unkriier*® carried out a detailed
experimental study of calendering of Polyvinyl Chloride (PVC) and Poly-
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Figure 3. (a) Flow pattern in the melt bank
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styrene (PS). Using color tracers he observed a complex flow pattern with
three recirculation regions in the melt bank and flow in the axial (cross-
machine) direction as shown in Fig. 3. In Unkriier’s thesis there islimited

Figure 3. (b) Flow in the axial (cross-machinc) direction

Pressure

Figure 3. (c) Pressure profiles at different axial positions.
(According to Unkriiert?%)

amount of rheological data of the melts and thus a direct comparison of
model predictions and experimental measurements on pressure distribution
is impossible.
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. Agassant® carried out an extensive experimental study on calendering
(using PVC and a silicone oil for certain measurements) and compared
his results to model predictions for separating forces and torques. Visuali-
zation studies of the complex flow pattern (similar to Unkriier’s'®) in the
melt bank were also included in Agassant’s work as well as studies on the
origin and appearance of calendered sheet defects. An investigation on the
surface irregularity Polypropylene (PP) sheet was carried out by Prentice®t,
Limited amount of experimental data was also given by Hatzmann et al¢h
Kopsch®® and Suto¥37,

Vlachopoulos and Hrymak?? presented pressure distribution and torque
measurements for rigid PYC carried out by Chauffoureaux¢¢, as well as
measurements of apparent viscosity and slip velocity for a wide range of

temperatures.

II. LUBRICATION APPROXIMATION

1. General Considerations .
Polymer melts flow at low Reynolds numbers, e.g. Re = 102 — 10-¢,

and the creeping flow approximation is applicable*®. Thus, the conservation
equations for steady flow are

Vv =0 o))
O=~vvw+vy7r 2
pCpv-yT = y-(kyT) + py.v + z:Av A3)

where p represents density, v velocity vector, p pressure, © extra stress
tensor, C, specific heat, T temperature and k thermal conductivity.

Polymer melt compressibility may be important in certain processes
(sce Tadmor and Gogos?), but not in calendering. Chung’s results® are for
uncharacteristically high calendering pressures. C, and k can be assumed
constant. Thus the above equations reduce to

v-v=20 “)
O0=—ygp+ v~ (5
pCov VT = ky*T + viyv ()

Further assuming that the fluid does not spread as it enters the gap bet-
ween the rolls, we may write equations (4), (5) and (6) for two dimensions,

where x is the direction of flow and y perpendicular to roll axis, as

Oy, | v,
é;'f-g:v-—o ™
=P UTxx , 0Ty
O===t& "% ®
0=—P % Oy ©)

oy  ox dy
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3
o, (n Tt m 3 )=k (Ga+ 5 )+ w3+

») et o)t e ey
v ov
+ s 5‘! + "yya—yz _(10)
It is also reasonable to assume that the flow in the gap will be nearly

parallel so that 3/ox € /0y, v, K Vx, Vx = vx(X, ¥) and p = p(x), thus
we bhave

v, OV,
3% t 3y = 0 (11)
—_®»,L 2
oT T Ovs
pC,v,é—x— =ka—};.- + 1‘,,5 (13)

Problems that can be described by equations (11) and (12) are said to obey

the lubrication approximiation®**=4?. The continuity equation (11) may be

replaced by the integral form '
h(x)

Q= 2] vs dy (14)

where Q is the volume rate of flow. To solve the above equations we also
need a constitutive equation that relates stress to the rate of strain.

2. The Newtonian Model
For a Newtonian fluid we have

Txy = P-Ey‘ (ls)

Thus the lubrication approximation equations for the rectangular coordi-
nate system of Fig. 4 are

Yy
[ § ‘ R
|
H
T
R

Figure 4. Notation for the lubrication flow analysis in the gap
" between two rotating rolls
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h(x)
0 =2 f vy dy (16)
op 3'v
Py ay, Q17

Equation (17) can be solved with the no-slip and symmetry boundary
conditions

v =V at y = h(x) (18)
vy
Ty = 0 at Y= 0
to give
_ »* — h¥(x)dp
and by using the conservation of mass equation (16) we get
(x) h¥(x) d
0=2 L v dy = Zh(x)[ B(u) dfc] 20)
or ~
dp _ 3 __9 )
Zx = ) (V () @

The distance between roll and the centerline can be expressed with a
remarkable degree of accuracy, even for relatively large distances from the
minimum gap width, by the second order polynomial

h(x) = (1 + 2—0) 22)

Introducing a dimensionless variable

X
V2RH,

X* ==

(23)

we have
h(x)

0

=14 x* . (24)

If we assume that the sheet leaves the rolls with a thickness & and a speed
V we have

Q=2VH (25)
and
H Q
H, = VA, 26)
Letting x* = A for A(x) = H we have
H__Q _ s
'HT— WH, I+ 27)

Substituting Q with (1 + A3) 2VH, and rearranging equation (21), we get
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dp* 18R x**'—A?
i =N H, @57y @)
where
. _ PH,
Equation (28) gives zero pressure gradient at x* = 3= A. The distance
x* = A represents the point where the sheet leaves the rolls and x* = — A

is the point of maximum pressure. Upon integration, with PPN)=0,
equation (28) becomes
9R [x"’(l —3A3)— 1 =5\

»=Jug, oy x*+(1—3M) (tan=2x*— tan~ A)

1+ 38
+1E5 x] (30)

The pressure distribution has a maximum at x* = A given by

.3 J_R"
Pmax 2 ZH-; (31)
where
143\
coy =1 i % A— (1 — 3\ tan-ta (2)

and becomes zero at x* =2 where the polymer leaves the rolls and at X¥ez )
where the rolls “bite” on the polymer. The relation between —2, and A is
unique. McKelvey's' results are slightly in error. Such errors cause large
deviations in power consumption calculations'®. Fig. 5 gives the A, versus
A relationship based on calculations by Ebhrmann and Vlachopoulos®®.
Pressure distributions are shown in Fig. 6 for different leave-off distances
A
If we assume that p —> 0 as x* > — o0 we get

A = 0.475 (33)

For that value of A we have the maximum sheet thickness to minimum gap
width ratio

Hmu — 2 __

H, = 1+ 2, =1.226 34)
The velocity can be easily obtained from equation (19) with the help of
equation (28) and can be expressed as

. 3=y (2 —x*)
Vx = 1 +§ (l F x.’) ) (35)

where

and y*= (36)

XL
R
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Figure 5. Relationship between A, the distance from minimum gap width

whero the rolls **bite’’ on the polymer, and A the leave-off distance
(Newtonian model),

A schematic diagram of the velocity profiles is shown in Fig. 7. We note
that the velocity at the centerline becomes zero (stagnation point) when

x* = — V2 + 3 37

For A == 0.425 the stagnation point occurs at the entry —A, Thus for
A > 0.425 a recirculatory flow pattern develops in the entrance region
as shown schematically in Fig. 7.

From the above results it is easy to calculate the separating forces, torques

and the power consumed (se¢ for example Tadmor and Gogos?, McKelvey?
and Middleman®?).

3. The Power-Law Model
For a power-law fluid with
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GIAY :
— (W) (38)
the lubrication approximation equations are
h(x)
o=2[" wd (39)
: °
P _ o (Px)
ax_ "oy (a.v) (40)

From the Newtonian model we anticipate two flow regions, a region
where the pressure gradient is positive (—\ < x* < A) and a region where
the pressure gradient is negative (—A, < x* < — ). Thus we should
integrate equation (40) separately for cach region. We have

1 dp\¥»
o= i (3 )" oo @
ijn

Introducing either one of the above equations into the integral of equation
(39) and then solving for the pressure gradient, we get

dp* 2n + 1\" [2R\YS (A3 —x*5)| a3 — x*#3 | n-1 3
ax* —( n ) (}To (T X h)me “3)
where
H n
r=2(%) 44)

This equation is valid for both flow regions i.e. for — o0 < x* << —A where
the pressure gradient is positive and for —A < x* ¢ A where the pressure
gradient is negative. Integrating equation (43) from x* to A we get

= (&*L_l) (Z—R)m r [Roxtpt R—xh) e g5

n Ho x‘ (1 +xo!)Mﬂ
At x* = — A the pressure dissribution has a maximum, so we may write
. _ 2n+1n 2R 1/8 oz__.xol)u
rr = (B55) () [ e (49)

When the calender is fed with a thermoplastic melt-from an infinite reser-
voir we may assume that p* vapishes as x* - — cc. Consequently, the
value of parameter A may be determined from
'y A — x*2 u—l(lﬂ — x*¥ i )
0 =L.| (1 +!xu)~'+1 ) dxe (47)
The corresponding value of the sheet thickness at the point of separation
from the rolls can be calculated from equation (24), i.e.

H
AR (48)




90 J. Vlachopoulos and E. Mitsoulis

The dependence of Aw and Hpex on the power-law index nis shown in Fig. 8
(see also Middleman*” and Vlachopoulos and Hrymak?®?).
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Figure 8. Leave-off distance A and sheet thickness as a function of power-law
index n for infinite feed.

4. The Power-Law Model with Slip
Vlachopoulos and Hrymak??® developed a lubrication approximation
analysis with slip. Based on measurements by Chaffoureaux et al*® the slip

velocity was assumed to obey the relation

V="V, + é‘r: (49)

where 7, is the shear stress at the wall and V,, B and « experimentally

determined constants.
The analysis begins with the simpliﬁed momentum equation

2 = (o) (50)
where
' e
The boundary conditions for calendering with slip at the roll surface are
aty=0 %‘ =0 (52)
at y = h(x) Vx = V—Vy— é e



Fluid Flow and Heat Transfer in Calendering 91

Upon integrating the momentum equation and after applying the boundary
conditions an expression for the velocity profile in the region where the

pressure gradient is positive was obtained

n (_l_ _8£_)1/u (m+10n — )1y 4+ — p, 1 (ép;)ch(x)' 53

= aFi\max B
and another expression for the region of negative pressure gradient

_ n 1 op\/m ndyn __ (n41)/n — __l_ - .a_p- ¢ *
== 1 () b)) + VY, 5(— %) A

(59)

Either of equations for the velocity profile may then be integrated to give
the volumetric flow rate

h(x)
0 =2 J' v, dy (55)
/]
The result may be written as

0 P\ pove . n (Lap)n,
5= V= Vo5 (38) W~ gy ( 32) e 0

2h m ox,
It turns out that it is convenient to introduce certain dimensionless variables
x
X* = ——— 57)
ViRE, (

Qo
P= = vom, ! 8

and from geometrical considerations (equation (24))

A

h(x) = Hy(l + x*3) (59
After transforming both sides of Equation (56) and rearranging we obtain
ap ap a-1 ap 1=nin _
(37,){3 P + it —A4=0 (60)
where
V-V,

A= ((i—+—x:_3)) (xoa —_ xl)

B= éH:(l + X QRH Y (61

1\~ !
C = (2n+l) (Tn-) (QRH )3 HG+Din(| 4 xo3)n41)in

Equation (60) was solved numerically by using a modified linear inter-
polation technique!® to givc the pressure gradient (@p/ax*) for a large
number of x* positions. The pressure distribution was then calculated by
introducing the pressure gradient values into a fourth-order Runge-Kutta
formula®»*, starting from x* = A and p = 0.



92 J. Viachopoulos and E. Mitsoulis

Comparisons between the lubrication approximation theory and ex-
perimental measurements® are shown in Fig. 9. While the lubrication
theory with slip predicts a pressure distribution closer to the experimental
data than the theory without slip, there is still considerable deviation. The

7.3 T T U T Y T T T T T Y T T T
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Figure 9. Comparison between predicted and measured pressure distributions
for the data given by Vlachopoulos and Hrymak??,

torques measured on the rolls were 353J and 226J while the calculated
values using the lubrication mode! with slip were 253J and 213J, respectively.
The deviations were believed to be due to uncertainties in temperature in
this isothermal flow analysis?®s.

5. Non-Isothermal Flow

Finston? seems to have made the first attempt to treat the non-isother-
mal problem. It is, however, Petrusanskii’s work®® as reported by Torner!?
and the subsequent analysis by Kiparissides and Vlachopoulos® that gave
a detailed information on the development of a temperature profile due to
viscous dissipation.

The non-isothermal analysis starts with the simplified equations

Q=2 K” vs dy (62)
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op_ 0 :
5; = ay (7Xy) (63)
oT T BV,
gz = ke + 5 (55) @9
where
Tey =M (%‘)n and m = m(T) (65)

Finite difference solution!®** of the above equations yields a rather peculiar
development of a temperature profile due to viscous dissipation as shown
in Fig. 10. These analyses suggest that a temperature rise of several degrees

T

Pigure 10, Schematic representation of temperature development
due to viscous dissipation

is possible because of viscous dissipation and may have detrimental effects
for temperature sensitive materials.

III. TWO-DIMENSIONAL ANALYSIS

The need for a fully two-dimensionnal model of calendering became
. apparent because of the inability of the lubrication approximation to des-
cribe the flow for large entrance angles and to account for recirculation
phenomena in the melt bank. Mitsoulis et als-%¢ used their MACVIP
finite element program® to solve the two-dimensional creeping flow
equations:
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x Tay =° (66)
0= —Ft+ T+ 5 )
0=-FrEE+ T (68)

pc’(”’%*"’r%}) =k(glx{:+%{)+r,,%¥‘+ 1',,%%‘

ar

3y (69)

v
+ Tyx 5;’ + Tyy

where, for a generalized Newtonian fluid (power-law model), we have

e = 20(1) 3 (0
= 20(F) 52 an
. [0 vy
e = 5y =20 (32 + %) (72)

and
(n-1)/2

i =m (35) " = m[30%+ 3 +2 1|

5 3

The apparent viscosity n(¥) will normally be a function of temperature and
may also depend on pressure?. Under usual calendering conditions, howe-
ver, pressnre dependence of viscosity will be insigoificant.

Numerical calculations were carried out®%% for the calendering of rigid
PVC data appearing in the paper of Vlachopoulos and Hrymak?®?. Tbe
pressure distributions were shown in Fig. 9 for isothermal conditions. The
predictions are similar to those of the lubrication approximation. The
deviations between theory and experiments are still present. .

Non-isothermal calculations were carried out for Newtonian and power-
law fluids for the same data as those of Kiparissides and Vlachopoulos®.
Considerable differences were noted because in the present solution the
convection term v,3T/ay as well as the rest of the terms that were omitted
in the lubrication analysis give rise to higher temperatures at the centerline
and higher maxima as shown in Fig. 11. A three-dimensional plot of tempe-
rature development due to viscous dissipation is shown in Fig. 12. When
the fully non-isothermal model was applied for the data of Fig. 9 with slip,
the deviation between theory and experiment became ecven larger. The
Maximum pressure was pmax = 6.7 MPa versus pmax = 5.6 MPa for assu-
med isothermal calendering at 182°C and pmex = 4.0 MPa as measured.

Mitsoulis et al#%® also developed a method for the determination of the
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Fig. 11 Comparison betwean calculated temperature distributions using
two-dimensional®® and lubrication approximation®* analyses.

free surface in the melt bank. In this method the calculations start from an
assumed frec surface shape. This is iteratively improved by constructing
successively new surfaces which must have the properties of a streamline
i.c. no cross-flow. The streamline pattern for rigid PVC calendering with
slip is shown in Fig. 13 and has a striking similarity with some of
Agassant’s®® experimental results. Unkriier*® and Agassant?® noted also the
existence of a third small vortex (see also Tadmor and Gogos®) but such
a vortex did not appear in any of Mitsoulis et al*®5¢ simulations. The
predicted temperature contours are shown in Fig. 14.

IV. VISCOELASTIC EFFECTS

As mentioned in the literature survey, few attempts were made to
account for the effect of viscoelasticity. While the importance of a Deborah
number has been cited the results are rather inconclusive.

Mitsoulis®¢ carried out some finite element calculations using the
Criminale-Ericksen-Filbey constitutive equation® which has the general
tensorial form

r=ni'+(%v,+w,){i.)’}_%\y,%i’ (74)
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where 9, ¥, and ¥, are the viscosity, the first and second normal stress
coefficients, respectively. These are functions of the magaitude of the rate

of strain tensor
}.’ = 2’ I N 2‘ 4 y ) (
| I_-l—’l -—-|-{Y' }}I 75’

The operator 9/t gives the corotational or Jaumann derivative

. D Y, 0 o 1 . .
%Y = @-Yu = —ZT” + CFrd Yic + 3 {on Yay — Yie 0k )} (76)
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where «y; is the vorticity tensor given by
oy = (dvy/dx; — dv,fox)) n

The iterative scheme failed to converge for values of Deborah number
larger than about 1.0. These numerical instabilities are encountered in all
aumerical calculations of viscoelastic flow (see for example Mitsoulis et ai®!
and Crochet and Walters®®). For Deborah number up to 1.0 the pressure
distribution results were only slightly different from inelastic calculations
and no definite trends could be detected.

The effect of normal stresses on pressure distribution can be approxi-
mately assessed (see also Tadmor and Gogos®* and Middlemant?) by
starting from the momentum equation

0m = 24 b +§dpj ' (18)

Adding and subtracting af,,/ax and then rearranging we get
T S
T S = (=) ()

The first term is of the order of magpitude [vxx — 7,,])/[R] and the second
term of the order [t.,])/[H,] and their ratio is of the order

e8]

Since R would typically be 162 —10? times larger than H, and the stress
ratio (txx—T,y)/%,x probably no larger than 10 before the onset of flow
instability®, we conclude that the normal stresses do not contribute much
to the total pressure. It is possible however, that the normal stresses are
responsible for flow pattern rearrangements in the melt bank. This topic
is currently under investigation by the authors of the present review.

V. THREE-DIMENSIONAL FLOW

It is well known that the thermoplastic material spreads laterally as it
enters the calender gap. This is due to the drag-induced pressure buildup
which produces flow both in machine and cross-machine (axial) directions.
This was clearly shown by Unkriier®® and apparently the combination of
these forward and lateral motions (see Fig. 3) is responsible for the com-
plex flow patterns observed. The complete three-dimensional analysis is
in principle possible with the finite element method. It would, however,
require a very large computer memory and large computer times because
the boundary is not a priori known but must be determined iteratively.
Such an analysis is quite impractical at the present time. It seems possible,
however, to combine the two-dimensional model with a simplified (lubnca-
tion type) model in the axial direction. Such a model might explain, in
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part at least, the discrepancies between the measured and predicted pres-
sure distributions of Fig. 9. In fact a simple analysis indicates that the
maximum pressure in the axial direction should have a parabolic distri-
bution (maximum at the center and zero at the boundary) and this seems to
be in qualitative agreement with Unkriler’s pressure profile measurements
at different axial positions that were shown in Fig. 3 It is also interesting
to note that for the data of Fig. 9 the sheet enters 22.5 cm wide and exists
37 cm wide. Since the pressure transducer was located on one cylinder 8
cm from the center we would expect a pressure approximately 209, lower
than the maximum pressure, a result that is rather close to the measured
value. Also, roll deflections (therefore larger gap) might have contributed
to a reduction of measured pressure.

VI. CALENDERED SHEET AND FILM DEFECTS

There has been very little information on the origin and the characteris-
tics of defects in calendered sheets. The discussion that follows is based
entirely on Agassant’s®™ comprehensive study on PVC. The calendered
PVC defects can be classified into the following categories:

(a) Dimensional Non-uniformities. These are thickness variations in the
machine or cross-machine direction due to the tendency of the rolls
to bend under large separating forces. Compensations for roll deflec-
tions are provided by using crowned rolls having a larger diameter
in the -middle than at the ends, roll bending or roll skewing (sce
Meinecke®®),

(b) Structural Anomalies, PVC exhibits certain particulate and crystal-
line structure changes under the influence of clevated temperature
and stress which may lead to formation of defects in calendered
sheets or films.

(¢) Mattoess. This is a micro-irregularity or loss of surface gloss that
appears only on the surface that is not in contact with the roll after
the shect leaves the calender gap. This defect is apparently related to
the phenomena of mattness, sharkskin and melt fracture in extrusion
through capillary and slit dies®,%, Agassant®® found that the onset
of this defect occurs at a constant maximum wall shear stress value
of about 5x 10® Pa, which is about twice the critical stress for slit
extrusion® of polystyrene.

(d)  V-shapes. These are surface thickness irregularities (up to 3u) in the
form of more or less regular partially open V's with their vertices at
the center of the sheet. According to Agassant?® these V-shapes are
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due to undulating motions in the melt bank that propagate from the
centre to the edges.

(¢) Air Bubbles. Bubbles of air are captured in the recirculating melt
bank, pass through the calender gap and become elongated air
enclosures in the sheet produced. High pressures that develop in the
gap sometimes prevent these bubbles from passing through,

VII. CONCLUDING REMARKS

Most mathematical models of calendering are based on the lubrication
approximation in one direction for Newtonian and shear-thinning materials.
Slip at the wall is apparently anecessary for the description of molten PVQO
flow through a calender gap. These models give reasonable predictions of
pressure distribution, torque and power consumption. Two-dimensional
finite element calculations permit the determination of the free surface and
the recirculating flow pattern in the melt bank. Three dimensional flow
occurs as the melt moves both in the machine and cross-machine directions.
There has not been any analysis thus far to account for three-dimensional
flow. Viscoelasticity may not be important in the determination of pressure
and separating forces but may play an important role in vortex pattero
formation in the melt bank, ’

There have been very few experimental studies and most of them with
limited knowledge of melt properties. There is clearly a need for more
experimental measurements of pressures, separating forces, torques and
power consumption with polymers that have been subjected to a thorough
rheological characterization. Also, more research on the origin and
appearance of sheet and film defects is needed.
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Most mathematical models of calendering are based on the lubrication approximation in one direction for Newtonian and shear-thinning materials. Slip at the wall is apparently necessary for the description of molten PVC flow through a calender gap. These models give mreasonable predictions of pressure distribution, torque and power consumption. Two-dimensional finite element calculations permit the determination of the free surface and the recirculating flow pattern in the melt bank. Three-dimensional flow occurs as the melt moves both in the machine and cross-machine directions. There has not been any analysis thus far to account for three-dimensional flow. Viscoelasticity may not be important in the determination of pressure and separating forces but may play an important role in vortex pattern formation in the melt bank.

There have been very few experimental studies and most of them with limited knowledge of melt properties. There is clearly a need for more experimental measurements of pressures, separating forces, torques and power consumption with polymers that have been subjected to a thorough rheological characterization. Also, more research on the origin and appearance of sheet and film defects is needed.
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