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Abstract. In fused filament fabrication (FFF), it is important to know the time required for a pair of cylinders to coalesce and form 

a single cylinder. Virtually all present day mathematical models for viscous sintering of polymer particles are based on Frenkel's 

model, which was originally developed for the start of the coalescence. It is based on the assumption that the process time is 

determined by the balance of surface tension and viscous forces. The original model and subsequent modification, by the second 

author and coworkers, was for two spherical particles. In sintering of spheres the balance is carried out for a biaxial flow field. For 

cylinder sintering the flow field is planar. Frenkel's model has been modified for planar flow and extended to the completion of the 

process. Comparisons were made to an isothermal model presented by Hopper, where an inverse ellipse shape was used to describe 

the evolving geometry, rather that two intersecting cylinders of the present case. Comparison with some experimental data has also 

been carried out. 
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INTRODUCTION 

The thermophysical interactions in additive manufacturing processes, such as Fused Filament Fabrication (FFF) 

and Selective Laser Sintering (SLS), are complex and intertwined. Simple mathematical models are necessary for a 

fundamental understanding of the processes. The first analytical work to describe the sintering of two isothermal 

viscous spherical particles (relevant to SLS), was carried out by Frenkel [1] and later corrected by Eshelby [2]. To 

describe the initial stage of isothermal sintering, the Frenkel Eshelby-corrected model assumes that the viscous 

dissipation balances the work done by surface tension. The balance is expressed mathematically as 

SV WW =                                                                                 (1) 

where 

 +=

V

T
V dVuuuW )(:                                                                (2) 

and 

dt

dS
WS −=                                                                               (3) 

where η is the viscosity, V the volume of the sintering system, Γ the coefficient of surface tension, S the surface of 

the sintering system and ∇u the velocity gradient. 

VISCOUS SINTERING MODEL OF A PAIR OF CYLINDERS 

A model for sintering of a doublet of cylinders was proposed by Hopper [3]. In contrast to the biaxial flow field 

assumed by Frenkel-Eshelby for the doublet of spheres, Hopper’s model assumes a planar flow, which is very close 

to what takes place in FFF. The model is based on the description of the cylinders doublet evolving cross section with 

a sequence of inverse ellipses. Martínez-Herrera and Derby [4] used two dimensional numerical simulations to study 

the sintering of two infinitely long cylinders. Their results are in agreement with Hopper’s predictions. Kosztin et al. 

[5] proposed a model for sintering a pair of cylinders using the essential tenets of Pokluda et al. [6], assuming a planar 

flow field. The same lines were followed by Xu et al. [7]. Sintering of a doublet of cylinders has been also studied by 

Gurrala and Regalla [8], using the Pokluda et al. [6] model assuming a biaxial flow field.  

The above-mentioned works do not provide enough information for the derivation of the neck growth equations 

and hardly any information on their importance in modeling the process of FFF.    
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FIGURE 1. Schematic representation of the shape evolution of a pair of long cylinders of initial radius ao. At some time t, the cylindrical 

parts intersect, forming a neck of width x(t). The angle of intersection at that time is θ(t) and the radius a(t). For simplicity the width, 

angle and radius are referred to as x, θ and a respectively. At the end of the process the final cylinder radius is af >ao. 

 

In sintering of spheres, it was assumed by Pokluda et al. [6] biaxial extensional flow. In sintering of cylinders the 

flow field is not biaxial, but planar described by  
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where   is the elongation rate. Consequently, Eq. 2 takes the following form 

=

V

V dVW 24                                                                            (5) 

At some time t, with reference to Fig. 1, the radius of each cylinder may be obtained from the conservation of mass 

(under the assumption of constant density) given by 

   

21

cossin 








+−
=




oaa                                                               (6) 

For a doublet of filaments with length L, its total surface S may be calculated from  

( ) −= aLS 4                                                                             (7) 

Substituting Eq. 6 into Eq. 7 results in 
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A constant elongation rate   is assumed throughout the complete domain approximated by [6] 
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At point O the velocity is zero, i.e. uy(O). The velocity uy(B) with which point B moves towards point O is given by 

( ) ( )cosa
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d
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Buy ==                                                                    (10) 

Substituting Eq. 6 in Eq. 10 yields 

( )
( )

( ) dt

da
Bu y





 
23

21

cossin

sin

+−

−
−=                                                            (11) 

Therefore, for the elongation rate   we have 
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Substituting the above result in Eq. 5 we arrive at an expression for the dissipated energy 
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A similar expression is derived for the work done by surface tension, substituting Eq. 8 in Eq. 3 
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Under the assumption of an always positive dθ/dt, equating Eq. 13 with Eq. 14 results in 

( ) ( )
( ) 








tansin

cossinsincos
2

2

21
21

−

+−+−
= −

oadt

d
                                   (15) 

Note that in the limit as θ→0 we have: π-θ≈π, sinθ≈θ, cosθ≈1-θ2/2 and tanθ≈θ. Therefore, Eq. 15 reduces to 
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which can be solved analytically giving 
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Eq. 17 may be regarded as a modified Frenkel model for sintering a pair of cylinders which applies at the start of the 

process. Eq. 15 is solved numerically following the lines by Pokluda et al. [6]. After θ is determined the dimensionless 

half neck width x/ao is obtained from  

sinax =                                                                            (18) 

or by substitution of Eq. 6 in the above 
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RESULTS AND DISCUSSION 

It is instructive to compare the numerical results for the sintering of a pair of cylinders (Eq. 15), with the 

corresponding model for sintering a doublet of spheres by Pokluda et al. [6]. At the early stage of the sintering process 

(Fig. 2a), the slope of the curve for the doublet of cylinders is higher than the one of spheres, which means that 

sintering of cylinders is faster than in the case of spheres. As the sintering time progresses (Fig. 2b), a cross-over point 

is observed (roughly when Γt/aoη≈0.45) after which the slope for sintering of spheres is higher than for cylinders, 

meaning spherical particles coalesce faster. At a later time, a second cross-over point is observed (approximately at 

Γt/aoη≈7) where the coalescence of spheres is nearly complete. 

In Fig. 3 the predictions of the present model are compared to Hopper’s [3] model. At the early stages of sintering, 

the present model predicts a faster sintering than Hopper’s. After some time, there exists a cross-over point after which 

 
FIGURE 2. Comparison of the present model for a doublet of cylinders (Eq. 19) with that of spheres (Eq. 6) at (a) early sintering stage 

and (b) at later times. 

 

Hopper’s model predicts generally a faster coalescence. Full coalescence in Hopper’s model is observed to be 

accomplished when the dimensionless time is about 5, whereas the present model predicts full coalescence when the 

dimensionless time is about 30. Such differences stem from differences of the curvature at the intersection of the 
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coalescing filaments. The present model assumes the intersection of two circles, while Hopper’s model uses the 

inverse ellipse shape for the entire domain.  

 

FIGURE 3. Comparison of the present model for cylinders with the model by Hopper [3], where the insert shows the value of 

the dimensionless neck width at full sintering. 

 

Chaunier et al. [9] studied experimentally the isothermal sintering of a pair of cylinders at different temperatures. 

In their work they introduced the concept of the convexity index Iconvex., as a sensitive morphological descriptor to 

assess the quality of FFF. In Fig. 4a, the cross-sectional areas associated with the convexity index are shown. They 

define the convexity index as 

4321

21
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+
=                                                                 (20) 

where S1=S2 is cross-sectional area of the cylinders and S3=S4 corresponds to the formed concavities between the 

filaments. For Iconvex reaching the value of 1, the bonding leads to a perfect fusion of the filaments without any residual  

concavity between them. In the present work, using simple geometrical considerations, an analytical expression for 

the area S1 and S2 is derived as a function of the bonding angle θ, given by 

( ) cossin2
1 +−= aS                                                                (21) 

The concavities S3 or S4 may be also expressed in a similar fashion  

( )  cossin2cos22
3 −+−= aS                                                       (22) 

An analytical expression for the convexity index may then be obtained  

 

FIGURE 4. (a) Schematic representation of the cross-sectional areas associated with the convexity index (Iconvex.) and (b) 

comparison of Chaunier et al. [9] experimental results of the convexity index with Eq. 23. 
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Note that at θ=0 the convexity index is Iconvex=2π/(4+π)≈0.879.   
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In Fig. 4b Iconvex. is shown as a function of sintering time, where θ is obtained from Eq. 15 and it is compared with 

the results from Chaunier et al. [9] for three different temperatures. For each temperature the temperature-dependent 

viscosity is calculated from [10,11] 
( )oTTb

e
−−

=   (24) 

where ηo the viscosity at a reference temperature To and b is usually referred to as temperature sensitivity with units 
oC-1. Although, in [9] the authors report no rheological data, we obtained values from a past work by Chaunier et al. 

[12], assuming the material used is the same. In [11] the material has a zero-shear viscosity ηο=7000 Pa∙sn at Το=130 
oC. Assuming a typical b=0.05 oC-1, we calculate zero-shear viscosity 11541 Pa∙sn (at 120oC) and 31371 Pa∙sn (at 

100oC). We also assume a typical value for the surface tension Γ=0.04 N/m. The filament radius is 1 mm in [9]. Our 

model predictions shown in Fig. 4b, capture the experimentally measured evolution of the convexity index 

qualitatively.  

CONCLUDING REMARKS 

The Pokluda et al. [6] model which accounts for the sintering process as two spheres form a larger one having a 

diameter 1.26 times larger than the initial, has been applied to two equal diameter cylinders. The model applies for 

the entire process of coalescence for the formation of a single cylinder having diameter 1.41 times larger than the 

initial. In both cases a homogeneous extensional flow field is assumed, biaxial for spheres and planar for cylinders. 

The sintering time for full coalescence, predicted by the present model of cylinders, is longer than that for spheres. 

The present model predicts somewhat different neck growth than a previous model by Hopper. The differences are 

apparently due to different shape of the cusp of the neck. The present model appears to be in qualitative agreement 

with some experimental data by Chaunier et al. [9]. 
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